

SHANDONG HUISON ELECTRONICS TECHNOLOGY CO., LTD

USER MANUAL

Disclaimer

Shandong Huison Electronics Technology Co., Ltd reserves the right to modify the content here without prior notice.

To access the latest version of the manual, please visit our website at <u>www.huisonbattery.com.</u>

1. Safety Instructions

Before installing the batteries, ensure you read and follow all safety instructions.

Lithium iron phosphate (LiFePO4) batteries are inherently safe chemicals; however, safety measures should always be considered before, during, and after installation, as well as during ongoing use and maintenance.

The following safety precautions are crucial for both installers and end-users to operate this product safely.

Improper installation may cause injury to the installer or others and damage the battery or connected equipment.

1.2 **APrecautions**:

- All product work must be handled by qualified personnel to reduce the risk of electric shock.
- Install according to local and national electrical standards before connecting to the grid.
- Keep product warning stickers visible.
- Due to the weight of the battery, use proper tools and manual lifting techniques.
- Do not short the battery terminals.
- Exercise caution with metal tools near the battery or battery-powered devices; arcing or short-circuits could cause severe injury, death, or equipment damage.
- Ensure the battery is "off" and check for voltage presence using a voltmeter before installation or operation.
- Always wear personal protective equipment (PPE) when handling batteries.
- Handle the battery carefully to avoid damage: prevent drops, dragging, or other improper handling.
- Inspect the battery carefully before use; do not use damaged or deformed products.
- Ensure all cables, busbars, and plug connections are properly tightened and secured.
- Use the correct tools for installing and removing the battery.
- Do not place any objects on top of the battery.

1.3 **A** Warning:

- The charging voltage must not exceed 57.6V.
- Do not charge or discharge the battery when the ambient temperature exceeds 55°C (131°F).
- Do not charge the battery if the ambient temperature is below 0°C (32°F), and do not discharge the battery if the temperature drops below -20°C (-4°F).
- Do not install the battery in locations where it may come into contact with conductive materials, water, seawater, strong oxidizers, or strong acids.
- Do not install the battery in direct sunlight, on hot surfaces, or in high-temperature environments.
- Do not install the battery in confined spaces with inadequate ventilation, as this may cause the system to overheat.
- Keep the battery away from any heat sources or materials that can be ignited by heat (such as paper, cloth, plastic, etc.).
- If the battery emits unusual odors, heats up, or exhibits abnormal behavior during operation or charging, immediately disconnect the battery.
- Equip the area near the system with an ABC or BC class fire extinguisher.
- Do not disassemble the battery,contact Powastone team for proper operating instructions. Incorrect repairs or reassembly may pose a risk of electric shock or fire and void the warranty.

2. POWASTONE Products

2.1 Introduction

Powastone batteries providing a compact and scalable solution for seamlessly integrating renewable energy into your home or business. With its cutting-edge features and intelligent design, this advanced lithium battery system empowers individuals and organizations to utilize their energy in unprecedented ways.

With Powastone series battery systems, you will always stay powered!

This user manual is intended to familiarize you with the specifications, features, performance, and usage of these batteries. Please read and pay attention to all safety information before installing or operating the batteries. This document applies to all Powastone Series Stackable Batteries.

2.2 Product Description

The Powastone Stackable 51.2V, 100Ah, 5kWh, with the capability to expand from 5kWh to 80kWh, is ideal for low-voltage residential solar, off-grid power systems, and backup power applications.

All Powastone battery products are equipped with our specially developed Battery Management System (BMS), which continuously monitors and records battery voltage, as well as real-time data on module current, voltage, and temperature. The BMS features both active and passive balancing functions with advanced algorithms to enhance battery pack performance.

Designed for durability, Powastone battery has a lifespan of over 15 years, achieving 6000-8000 cycles at 0.5C and 80% Depth of Discharge (DOD). You can always monitor the battery's status and performance through the product's touchscreen interface, which displays real-time battery conditions.

2.3 Product features

Advanced Battery Management System (BMS)	Safe and efficient lithium iron phosphate battery
Modular design for quick and easy installation and expansion	Built-in fire protection module (Optional)
Multi-layer safety protection	Built-in active balancing module
Excellent insulation performance	Busbar design, high current operation supported
Touchscreen operation and debugging	Supports parallel connection of up to 30 batteries
Compatible with mainstream inverters	CANBUS and RS485 communication

2.4 Applications

- Residential
- Commercial
- Restaurants

- Apartments Small Offices
- Backup Power

2.5 Product and accessories

3.POWASTONE Family

Powastone 5KWh-30KWh

3.1 Specification

Model	PS-10KWh	PS-15KWh	PS-20KWh	PS-25KWh	PS-30KWh			
Voltage	51.2V							
Current			Max 100/	4				
Capacity	200Ah	300Ah	400Ah	500Ah	600Ah			
Energy	10KWh	15KWh	20KWh	25KWh	30KWh			
Voltage range			40V-57	.6V				
Max charge current			100A					
Max discharge current		150A						
Peak current		1000A(3S)						
Working temperature			Charge 0~6 Discharge -20	0℃ ~60℃				
Charran			200 AF%					
temperature			-20~45*0	,				
Size mm	640*450*300	640*450*450	640*450*600	640*450*750	640*450*900			
Weight kg	106	106 159 212 265 318						
Communication	RS485/CANBUS							
IP Level	50 Indoor							
Certificate		UL9540,UL1973,IEC62619,CE/EMC,MSDS,UN38.3						

13.4 340 mm

[25.2] 640 mm [17.7] 450 mm [20.1] 510 mm

30kWh Dimension

3.3 Definition of the BMS interface

No.	Item	Description	Note	
1	Negative terminal Batt-	Black	200A Current	
2	Positive terminal Batt+	Orange	200A Current	
3	SOC indicator	0-100% SOC		
4	Alarm	Errors		
5	Run	Working status		
6	RS485 comm port	PC software/Inverter communication		
7	CANBUS comm port	Inverter communication		
8	Parallel RS485 port	Battery parallel Must be empty master battery		
9	Parallel RS485 port	Battery parallel		
10	RPSD	2 pins dry contact Rapid shut down		
11	ON/OFF switch	Turn on off the BMS		

3.4 Communication port definition of RS485 and CANBUS

|--|

RS485 and CANBUS

RS485PC s	software、485 update (X1)	CANInverter CAN/RS485Comm (X2)		
Pin number	Definition	Pin number	Definition	
PIN1	Empty	PIN1	Empty	
PIN2	Empty	PIN2	Empty	
PIN3	RS485A1	PIN3	Empty	
PIN4	Empty	PIN4	CAN-BUSH	
PIN5	RS485B1	PIN5	CAN-BUSL	
PIN6	Empty	PIN6	Empty	
PIN7	Empty	PIN7	RS485A1	
PIN8	Empty	PIN8	RS485B1	

3.5 Parallel communication

RS485B1 & RS485B2

RS485- parallel communication							
RJ45 (X3)	Definition	RJ45 (X4)	Definition				
PIN1	Empty	PIN1	Empty				
PIN2	DI	PIN2	DI				
PIN3	A-PACK parallel	PIN3	A-PACK parallel				
PIN4	GNDDI	PIN4	GNDDI				
PIN5	B-PACK parallel	PIN5	B-PACK parallel				
PIN6	IO1	PIN6	IO2				
PIN7	Empty	PIN7	Empty				
PIN8	DGND	PIN8	DGND				

3.6 Definition of the LED indicator

State	Normal / Alarm / Protection	Power quantity indicates the LED			Alarm indicator	Run		
		•	•			•	•	Definition
Shut down	Sleep	Off	Off	Off	Off	Off	Off	All off
	Normal		According to the SOC				Flash	
	Alarm	According to the SOC			ON	Flash	Stop charging	
Charge	Overcharge protection	ON	ON	ON	ON	ON	Flash	Stop charging
	Temperature, overcurrent, and failure protection	According to the SOC				ON	Flash	Stop charging
	Normal		Accordi		00	Off	Flash	
	Alarm						Flash	Stop discharge
Discharge	Over-dischar ge protection	ON	ON	ON	ON	ON	Flash	Stop discharge
	Temperature, overcurrent, and failure protection		According to the SOC			ON	Flash	Stop discharge

3.7 Dry contact

Number	Function	Definition
1	2 -4 pins	Often closed, emergency stop

4. Battery Installation

Warning: Before installation, be sure to review all warnings and precautions in Section 1.

4.1 Installation Safety Guidelines

- Upon receiving the battery, inspect it for any signs of damage before use. If the battery is damaged, contact Powastone for repair or replacement. Avoid using a defective battery, as this may lead to malfunction, unnecessary losses, and even the risk of fire.
- Check to ensure that all cables, plugs, and components are in good condition.
- Ensure that your battery pack is in the "off" state before connecting/disconnecting any components.
- It is prohibited to short-circuit the external battery terminals. When connecting the battery, ensure that each wire harness, busbar, and plug is properly connected, and no materials should be present that could cause a short circuit.
- Use a screwdriver with rubber-coated handles.
- Do not connect batteries in series.
- Always install the battery horizontally.

4.2 Installation Requirements

The installation of the battery significantly affects safety, lifespan, and performance. It should be installed in a location that facilitates system wiring, maintenance, and operation while avoiding environments with high temperatures and high humidity. Ensure the battery has sufficient space and secure support. Use cables that match the maximum current demand of the equipment. Keep the wiring tidy, moisture-proof, and corrosion-resistant. During installation, wear an anti-static wrist strap, and have at least two people present.

4.3 Installing tools

Voltage meter	Clamp meter	Screwdriver kit	Hexagonal screwdriver kit
Wrench kit	Knife	Claw hammer	USB to RS485 adapter

4.4 Personal protective equipment

5. Powastone system installation

5.1 Installing batteries

① Install the bottom base on the ground about 50 millimeters (2 inches) away from the wall and lock the casters to prevent sliding.

 \odot Stack a battery module on top of the base, aligning the fixing holes to prevent the battery from sliding.

 \Im Then stack another battery module and align the fixing holes.

4 The rest of the batteries are stacked in sequence, and it is recommended to stack a maximum of 8 battery modules.

5.2 Busbars connection

If the battery system has a capacity of 10KWh(2 x batteries) or above, it must be connected using the supplied busbars.

• Connect the negative terminals of the master battery and the slave batteries using black insulated busbar;

2 Connect the positive terminals of the master battery and the slave batteries using orange insulated busbar;

3 Use the <u>M8</u> nuts provided and tighten them with a wrench with a torque of <u>17-20</u>Nm, put on the plastic cover with the plastic nut.

u Install the back cover and put on the top cover.

5.2.2 Parallel communication cable connection

The Ethernet cable provided must be used for two or more batteries are used in parallel, as other Ethernet cables may cause communication errors.

BMS Ethernet port sequence number

Insert the RJ45 connector of the network cable into the fourth RS485 port of the master battery.

 \bigcirc Insert the RJ45 connector on the other end of the network cable into the third RS485 port of the second battery.

4

③ Repeat this process for the corresponding network cables. The fourth port of the last battery group will remain empty.

Warning: The master battery (connected to the inverter) is not allowed to use the 3rd RS485-B1 network port!

5.2.3 Connection Between Battery Clusters

When connecting more than 8 batteries in parallel, you need to use another set of bases and install the batteries properly. The maximum distance between two battery clusters should not exceed <u>1</u> meter.

Prepare one red and one black <u>AWG#4</u> cable, with each end crimped using 25-8 lugs.

Prepare a 1-meter network cable.

(1) Connect the black cable from the negative terminal of the last battery in the main battery cluster to the negative terminal of the other battery cluster.

(2) Connect the red cable from the positive terminal of the last battery in the main battery cluster to the positive terminal of the other battery cluster.

(3) Connect the No.4 network port of the last battery in the main battery cluster to the 3rd network port of the other battery cluster.

For parallel more than 30 batteries, contact us for advice.

6. System Debugging

6.1 Master and Slave Battery Address Setup

The master and slave battery settings can be configured via the built-in touch screen or a PC computer, without the need for DIP switch operations.

6.1.1 Auto DIP(Address) setting

To facilitate user installation and use, we have integrated an automatic address assignment feature in the latest version 6.1 of the BMS. You only need to set the address of the master battery touch screen to $\underline{1}$, and the other batteries will automatically assign their corresponding addresses.

6.1.2 Manually DIP(Address) Setting

If not Version 6.1BMS, need set the Master Battery and slave battery:

Max support 30 batteries in parallel, for more than 30 batteries, contact us for advice.

6.1.3 DIP(Address) Setting via PC software

Refer to the operational guidelines in Section 15 of this manual.

Note: The master battery must be set to $\underline{1}$, while slave batteries cannot be set to 1, and there must be no duplicate addresses between the master and slaves; otherwise, communication issues may occur.

- Master Battery: The battery connected to the inverter.

- Slave Battery: Other parallel batteries in the battery system, excluding the master battery.

7.Definition of the inverter RS45 pins

Rj45 Pin No. of different inverters						
Brand	Туре	Version	Model	BMS to inverter PIN No.		
Sol-Ark	CAN	V1.2	Sol-Ark-12K-P/15K	CAN 4 5 to 4 5		
Megarevo	CAN	V1.01	R6KL1	CAN 4 5 to 4 5		
GOODWE	CAN	V1.7		CAN 4 5 to 4 5		
MUST	CAN	V1.04.04	PH18-5048 PLUS	CAN 4 5 to 6 5		
Growatt	CAN	V1.08	SPF 5000ES	CAN 4 5 to 4 5		
Schneider	CAN		Conext XW Pro6848	CAN 4 5 to 4 5		
Sorotec	CAN		REVO HES 6kW	CAN 4 5 to 4 5		
Aiswei	CAN	V1.0		CAN 4 5 to 4 5		
Deye	CAN	V1.0	SUN-10K-SG04LP3- EU	CAN 4 5 to 4 5		
GSSTES	CAN	V1.2		CAN 4 5 to 4 5		
Victrion	CAN		MultiPlus-II	CAN 4 5 to 7 8		

			48 3000 35-50 120V	
Voltronic	RS485	20231202		RS485 3 5 to 5 4
SMK	RS485			RS485 3 5 to 2 1
WAET	RS485	20231202	SL1108	RS485 3 5 to 7 8
SRNE	RS485	V1.3	HF4850S80-H/SPI-1 0K-U/HSI 5500P	RS485 3 5 to 7 8
Growatt	CAN&RS4 85	V1.08/V2. 01	SPH 3000TL BL-UP	CAN 4 5 to 4 5

8. Screen Navigation and Protocol Selection

After connecting the Powastone battery to the inverter, if you want the battery to communicate with the inverter, you need to configure the battery address and protocol through the screen on the master battery.

If communication is not required, the battery can be directly connected to the inverter.

The Powastone battery has multiple built-in inverter protocols with different brands. When using different inverters, you need to access the battery's touch screen settings page and select the corresponding protocol.

8.1 Master Battery Touch Display

After the battery is parallel connected, the total information of the battery system, including total capacity, total voltage, and information of individual batteries, can be read through the touch screen of the master battery display.

8.2 Slave Battery Touch Display

Also show the real-time cell voltages, 7-temperatures, alarm,fault, and setting

 $\odot~$ 12 strings of cell voltages

PACK-	1	Cell voltage			
01:	3281	mv	09:	3290	mv
02:	3281	mv	10:	3289	mv
03:	3288	mv	11:	3288	mv
04:	3289	mv	12:	3287	mv
05:	3290	mv	13:	3286	mv
06:	3291	mv	14:	3285	mv
07:	3292	mv	15:	3286	mv
08:	3291	mv	16:	3287	mv
6					

3 7 temperatures

PACK- 1 Internal ter	nperature
BMS: 16.0 °C	Pack: 16.7 °C
Cell1: 16.2 ℃	Cell2: 17.0 ℃
Cell3: 16. 4 ℃	Cell4: 17.3 ℃
Environment: 17.6	°C

ⓐ Historical record

6 Protocol selecting

8.3 Inverter Protocol Settings

①Click the gear button, input the password, and enter the settings interface

②Click to select the protocol of the inverter, once selected.

Warning: Do not operate while the battery and inverter are connected and working!

List of currently supported inverters

PYLONTECH		Voltronic Power Advancing Power
GOODWE	victron energy	Energy - Anytime - Anywhere
Deye	SSFAR	MEGAREVO
SUN 😂 SYNK	solis	<i>s</i> electronic
GROWATT	invt	SOROEEC®
Schneider Electric	MUST [®]	SNADI®
	EAST [®]	And more
SMA	💋 SRNE	

9. Turn ON/OFF the battery

Function	Steps
Power on	BMS is in the off state, press the on/off switch of master and slave batteries in sequence to activate the BMS. After the LED indicator lights flash in sequence, it enters the normal working state, the display screen lights up, and then open the circuit breaker .
Power off	BMS is in the power on state,press the on/off switch, the BMS is turned off and enters the shutdown state. At this time, all indicator lights and display screens are turned off. Close the

10. Battery Operation Guide

Warning: Before installation, be sure to check all parameters listed in Chapter 2.

10.1 Charging

- ✓ Before starting to charge, check the charging voltage to ensure it is within the appropriate voltage range.
- ✓ The battery cannot be charged at freezing temperatures. If an attempt is made to charge the battery below 0°C/32°F, the BMS (Battery Management System) will prevent charging until the battery temperature rises above 0°C/32°F.
- ✓ It is recommended to charge the battery regularly rather than waiting for it to be fully discharged. This is better for the battery's longevity compared to frequent fast charging, which shortens battery life.
- ✓ It is advisable to charge the battery when the SOC (State of Charge) is at <u>20%</u>. Deep discharging will not damage the battery's lifespan, but the BMS requires a minimum operating voltage to function properly.

10.2 Discharging

- The battery can be fully discharged, and lithium iron phosphate (LiFePO4) batteries can safely be discharged to 0%. However, charging the battery at more than 20% SOC instead of 0% can extend its life to 8000 cycles or more.
- > Do not discharge the battery if the temperature exceeds 55°C/131°F.
- Discharging the battery at sub-freezing temperatures may result in lower capacity. Capacity will increase once the temperature rises above 0°C/32°F.
- When the battery reaches its set minimum voltage, the BMS will engage protection and stop discharging automatically, with no manual intervention needed. After protection is triggered, charge the battery promptly to prevent damage from over-discharge.

Note: Failure to charge the battery after a full discharge for an extended period may cause irreversible damage, voiding the warranty.

11. Charge and discharge curve

12. Storage

- Lithium iron phosphate (LiFePO4) batteries have an extremely low self-discharge rate in off mode and can be stored for a long time, as long as they retain some charge before storage.
- Before storing a lithium-ion battery, charge it to at least <u>80%</u>. Do not store a completely discharged battery. If the battery is fully charged, discharge it to <u>80%</u> before storage.
- If you need to store the battery for an extended period, make sure to disconnect all loads to reduce self-discharge.
- Batteries stored for more than six months must be recharged. Damage caused by over-discharge will void the warranty.

13.Extending Battery Life

Powastone batteries are designed to last 15 years. To ensure the battery operates normally, you must follow the instructions and battery parameters mentioned earlier. To extend the battery's lifespan, follow these recommendations:

- Avoid discharging the battery beyond 80% Depth of Discharge (DOD) unless absolutely necessary.
- Keep the battery temperature below 95°F (35°C) and above 59°F (15°C).
- > Maintain the charging and discharging current below 0.5C.

If the connectors, harnesses, or busbars are oxidized, damaged, or dirty, clean or replace them promptly to prevent overheating risks.

14.Troubleshooting

If the battery malfunctions, you will see the operation indicator light turns red and stay solid. When you wake up the battery's touchscreen, the corresponding error will appear, and you can view the fault in the history log (refer to the error codes in the diagram).

PACK- 1 Alarm d	etails	PACK- 1	Alarm	
Pack overvoltage protection	Pack undervoltage protection	latest 0 Total	0	
Charge overcurrent protection	Discharge overcurrent protection	0		≣↑
Charge high temperature protection	Charge low temperature protection	0		=.
Discharge high temperature protection	Discharge low temperature protection	0		_
Abnormal high voltage protection	Low voltage prohibits charging	0		≣↓
â	Short-circuit protection	6	J	

Screen alarm history English abbreviation comparison

Charging over-current protection	OCC
Charging low temperature protection	UTC
Charging high temperature protection	отс
Discharge over-current protection	OCD
Discharge low temperature protection	UTD
Discharge high temperature protection	OTD
Single cell overvoltage protection	OV
Single cell undervoltage protection	UV
Short circuit protection	SC
Emergency stop alarm	RPSD Activated
Charge/discharge MOS fault	C-MOSfault/D-MOSfault

14.1 Troubleshooting List

No.	Troubles	Description	Solution				
No. Tr 1 Ca 2 Na 2 Na 3 SF 4 Ca 6 Ca 7 Ca 8 P 9 P 10 T 12 T	Communication failure	Communication port	Use the right PIN RJ45 connector				
		Battery address	Reset the battery address				
		Protocol error	Select the right protocol				
2	No DC output	Battery off	Turn on the battery				
		Low voltage	Charge the battery				
3	Short working time	Low capacity	Ask for warranty				
		Not fully charged	Charge the battery				
4	Can not be fully charged	Charging voltage too low	Reset the charging voltage				
6	Capacity is low	Voltage differences between the cells	Check the display of the cell voltages, use active balance				
7	Can not charge or discharge	BMS/Cell/Sensors failure	Ask for warranty				
8		Over current	Charge or discharge current is too high, need reduce the load power				
9	Protection status	High/low temperature	Turn off the battery to lower/raise the battery temperature to the BMS recovery temperature value				
10		Low voltage/over voltage	Charge/discharge the battery				
11]	Short circuit	Check and remove the short				
12	Touch screen error	Show error code/ Frozen	Ask for warranty				

15.Battery maintenance

Items	Maintenance	Interval
Power cables/	Check if the power cable is damaged,	
Connectors/ Screws	Discoloration, rusting, and oxidation of the busbar.	
Power cables/ Busbar/ Connectors/ Screws Ethernet cables Vetalwork Running status	Check if the terminal connections are loose; If there are signs of looseness, please use a standard torque wrench to tighten.	Every 6 months
	Check if the screws are loose or if the busbar has discolored, rusted, or corroded;	
	If the screw is loose, please tighten it with a standard torque wrench;	
	If the busbar rusts, please contact after-sales for replacement.	
Ethernet cables	Check if the RJ45 connectors are loose. If they are loose, please re plug them tightly.	Every 12 months
	Check if the color of the cable has changed significantly. If it has changed color, please turn off the system and replace the cable.	
Metalwork	Check if the metal casing is dirty, damaged, or rusted.	Every 6-12 months
Running status	Check if all parameters (voltage, current, temperature, etc.) are normal during system operation.	Every 6 months
	Check if the critical components , including switches, display screens, circuit breakers, etc., are functioning properly.	
Charge/discharge	Check SOC and SOH of the battery, can be viewed from PC software	Every 6 months

16.PC software debugging

To view real-time detailed information of BMS and historical data, you can use battery monitoring software and follow the following steps.

You will need the following tools and software:

 \bigcirc Windows laptop or tablet with USB interface;

② USB to RS485 adapter and network port to RS485 connection terminal or RJ45;

3 Connecting Diagram

RJ45	1	NC	F	RS485-B	1	
	2	NC	I	RS485-A	2	0000
	3	RS485-A		RXD	3	THE PARTY I
	4	NC		TXD	4	
JJ1 J8	5	RS485-B		GND	5	
	6	NC	1	NC		
	7	NC	1	NC		99999
	8	NC	1	NC		

Insert the adapter's USB port into the computer's USB port, and insert the RJ45 connector into the battery's RS485 network port.

⁵ Operating from the PC software (bt_bms).

Open the PC software	bt_bms
Click to set <u>Serial</u> <u>Port (may different</u> COM), and the corresponding MODBUS address and port rate 9600,	Setting Serial Port COM3 C Baud Rate 9600 C Modbus Address 2
click to <u>open serial</u> port.	Open Serial Port

After completing the serial port configuration, click to <u>Start collect</u>, and the current real-time data can be displayed in the the main interface.

stem Config		Voltage Protection			Current Protection			Temperature Protection	'n	
tteries Number	16 🔹	Voltage of PF	3900	mV	Voltage of OCD1	20mV -		MOS Temp:		
trol of Precharge Function	off •	Relay Time of PF	85	·	Relay Time of OCD1	4S •		Temp of OTC	100	°C
trol of C-MOS Recovery	off 🔹	Voltage of OV	3750	mV	Voltage of OCD2	30mV •		Release Temp of OTC	70	°C
Control of OCC&OCD	off 🔹	Release Voltage of OV	3550	mV	Relay Time of OCD2	25 -		Temp of UTC	-20	°C
as Balance Controller	off 🔹	Relay Time of OV	15	·	Voltage of SC	50mV •		Release Temp of UTC	-10	°C
rol of LOV	off 🔹	Voltage of UV	2500	mV	Relay Time of SC	320uS -		Temp of OTD	100	°C
Control of UV	Close D-MOS -	Release Voltage of UV	2700	mV	Voltage of OCC	20mV •		Release Temp of OTD	70	°C
rol of PF	on 🔻	Relay Time of UV	15	·	Relay Time of OCC	1S •		Temp of UTD	-20	°C
rol of Pin_CTL	Invalid •	Voltage of BAL	3500	mV	Relay Time of OC Recovery	8S •		Release Temp of UTD	-10	°C
trol of OC Release Time	off 🔹	Voltage of PRE	2400	mV						
Control of UVR	off 🔹	Voltage of LOV	2000	mV	Current of OCC	100	Α	Battery Temp:		
y Time of Load Release	2000mS •	Detection Voltage of C&D	500uV ·	·	Current of OCD	100	Α	Temp of OTC	65	°C
y Time of OV MOS Opening	128uS 🔻				Relay Time of OCC	8	s	Release Temp of OTC	55	°C
					Relay Time of OCD	8	s	Temp of UTC	2	°C
100 AF	100 %	Inverter-related(1 decin	nai piace	oniy)	Recovery Time of OC	30	s	Release Temp of UTC	5	°C
Write Write	Write	Chg Voltage Limit	57.6	v				Temp of OTD	65	°C
write	write	Dsg Voltage Limit	41.6	v	Release Temp of UTD	100	A	Release Temp of OTD	55	°C
otocol(Select on the left or in	put on the right)	Chg Current Limit	100.0	Α	Relay Time of CHGLimit	5	s	Temp of UTD	-5	°C
01.Sol-Ark (CAN)	0	Dsg Current Limit	100.0	Α	Recovery Time of CHGLimit	600	s	Release Temp of UTD	-2	°C
Write			Write				_			

After selecting_ system config page, click the read register button to start reading the original configuration of the device. After completing the reading, the configuration of the device can be modified.After confirming the modification, click the <u>write register</u> to complete the configuration modification (Click the default parameter button to reset the configuration to the default value)

System Config				Voltage Protection			Current Protection			Temperature Protection	n	
Batteries Number	1	.6	•	Voltage of PF	3900	mV	Voltage of OCD1	20mV	•	MOS Temp:		
Control of Precharge Functi	on o	ff	•	Relay Time of PF	8S •		Relay Time of OCD1	4S	•	Temp of OTC	100	C
Control of C-MOS Recovery	0	ff	•	Voltage of OV	3750	mV	Voltage of OCD2	30mV	•	Release Temp of OTC	70	°C
AOS Control of OCC&OCD	0	m	•	Release Voltage of OV	3550	mV	Relay Time of OCD2	2S	•	Temp of UTC	-20	°C
ACU as Balance Controller	o	m	•	Relay Time of OV	15 -		Voltage of SC	50mV	•	Release Temp of UTC	-10) °C
Control of LOV	0	m	•	Voltage of UV	2500	mV	Relay Time of SC	320uS	•	Temp of OTD	100	°C
NOS Control of UV	C	lose D-MO	•	Release Voltage of UV	2700	mV	Voltage of OCC	20mV	•	Release Temp of OTD	70	°C
control of PF	o	in	•	Relay Time of UV	1S •		Relay Time of OCC	1S	•	Temp of UTD	-20	c
ontrol of Pin_CTL	h	nvalid	•	Voltage of BAL	3500	mV	Relay Time of OC Recovery	8S	•	Release Temp of UTD	-10	°C
ontrol of OC Release Time	٥	off	•	Voltage of PRE	2400	mV						
oad Control of UVR	٩	off	•	Voltage of LOV	2000	mV	Current of OCC	100	Α	Battery Temp:		
telay Time of Load Release	2	000mS	•	Detection Voltage of C&D	500uV 🔻		Current of OCD	100	Α	Temp of OTC	65	ъ
elay Time of OV MOS Oper	ing 1	28uS	•				Relay Time of OCC	8	s	Release Temp of OTC	55	ъ
							Relay Time of OCD	8	s	Temp of UTC	2	°C
Address Capacity	Ab	100		-Inverter-related(1 decin	nai piace oi	niy)	Recovery Time of OC	30	s	Release Temp of UTC	5	°C
		100	~	Chg Voltage Limit	57.6	v				Temp of OTD	65	°C
Write		Writ	e	Dsg Voltage Limit	41.6	v	Release Temp of UTD	100	A	Release Temp of OTD	55	°C
Protocol(Select on the left	or inpu	ut on the rig	ght)	Chg Current Limit	100.0	A	Relay Time of CHGLimit	5	s	Temp of UTD	-5	°C
O1.Sol-Ark (CAN)	· C			Dsg Current Limit	100.0	A	Recovery Time of CHGI imit	600	•	Release Temp of LITD	-2	č
Weit					Meito		incovery time of chidelinite			nercose remp of orb	-	

Set the battery address on the PC software

Click <u>read register</u>, enter the address address in the write address field, click <u>write</u>, and a popup will appear, indicating that the battery address has been successfully modified.

R	eal-time collect System conin	g Data Log A	Narm Record Calibration								
COM3 COM3	System Config		Voltage Protection			Current Protection			Temperature Protection	on	
Baud Rate	Batteries Number	16 🔹	Voltage of PF	3900	mV	Voltage of OCD1	20mV	•	MOS Temp:		
9600 👻	Control of Precharge Function	off 🔹	Relay Time of PF	85 •		Relay Time of OCD1	4S	•	Temp of OTC	100	°C
Modbus Address	Control of C-MOS Recovery	off •	Voltage of OV	3750	mV	Voltage of OCD2	30mV	•	Release Temp of OTC	70	°C
2	MOS Control of OCC&OCD	off 🔹	Release Voltage of OV	3550	mV	Relay Time of OCD2	2S	•	Temp of UTC	-20	°C
Open Serial Port	MCU as Balance Controller	off 🔹	Relay Time of OV	15 •		Voltage of SC	50mV	•	Release Temp of UTC	-10	°C
-Collect	Control of LOV	off •	Voltage of UV	2500	mV	Relay Time of SC	320uS	•	Temp of OTD	100	°C
Start Collect	MOS Control of UV	Close D-MO5 💌	Release Voltage of UV	2700	mV	Voltage of OCC	20mV	•	Release Temp of OTD	70	°C
Stop Collect	Control of PF	on 🔻	Relay Time of UV	15 🔹		Relay Time of OCC	15	•	Temp of UTD	-20	°C
	Control of Pin_CTL	Invalid 🔻	Voltage of BAL	3500	mV	Relay Time of OC Recovery	8S	•	Release Temp of UTD	-10	°C
Config	Control of OC Release Time	off •	Voltage of PRE	2400	mV						
Default Settings	Load Control of UVR	off	Voltage of LOV	2000	mV	Current of OCC	100	A	Battery Temp:		
Read Register	Relay Time of Load Release	2000mS •	Detection Voltage of C&D	500uV 💌		Current of OCD	100	Α	Temp of OTC	65	°C
Write Register	Relay Time of OV MOS Opening	128uS *				Relay Time of OCC	8	s	Release Temp of OTC	55	°C
	Address Describer					Relay Time of OCD	8	S	Temp of UTC	2	°C
BMS Off	2 100 AF	100 %	Inverter-related(1 decin	nal place on	(V)	Recovery Time of OC	30	s	Release Temp of UTC	5	°C
Language 🔻	Write	Write	Chg Voltage Limit	57.6	v				Temp of OTD	65	°C
Constant Constant			Dsg Voltage Limit	41.6	v	Release Temp of UTD	100	Α	Release Temp of OTD	55	°C
	Protocol(select on the left of h	of the right	Chg Current Limit	100.0	A	Relay Time of CHGLimit	5	S	Temp of UTD	-5	°C
	O1.Sol-Ark (CAN)	0	Dsg Current Limit	100.0	A	Recovery Time of CHGLimit	600	s	Release Temp of UTD	-2	°C

Select the inverter protocol from PC software

Click read register, choose the protocol to use from the drop-down menu, or manually enter the serial number on the right and click write. The message 'Write successful' will pop up, indicating that the inverter protocol has been successfully modified.

80	头时米果 杀斑豌豆 米算	电记求 报警记求	診 額役准						
сомз 🔻 🔊	系統配置		电压保护		电流保护		温度保护		
树丰	电池节数	16串-b'0000 ×	异常高压保护电压	3900 mV	放电过流1保护电压	20mV 🔻	MOS温度:		
9600 *	预充电控制	off •	异常高压保护延时	8S 💌	放电过流1保护延时	4S 🔻	充电高温保护	100	°C
NODBUS地址	充电MOS恢复控制	on 💌	过压保护电压	3750 mV	放电过流2保护电压	30mV 🔻	充电高温保护释放	70	ъс
	充放电过流MOS控制	on 💌	过压保护释放电压	3550 mV	放电过流2保护延时	2S 🔻	充电低温保护	-20	с
刊井 単口	MCU控制平衡	on 🔹	过压保护延时	1S 🔻	短路保护电压	50mV 🔻	充电低温保护释放	-10	с
《集	低压禁止充电使能	• 110	欠压保护电压	2500 mV	短路保护延时	320uS 💌	放电高温保护	100	ъ
启动 采集	过放MOS控制	关放电MOS 💌	欠压保护释放电压	2700 mV	充电过流保护电压	20mV 💌	放电高温保护释放	70	°C
停止 采集	异常高压保护	on 💌	欠压保护延时	15 •	充电过流保护延时	15 💌	放电低温保护	-20	°C
	CTL管脚控制	Chg/Dsg 🔹	平衡开启电压	3500 mV	过流自恢复延时	8S -	放电低温保护释放	-10	с
(四)	电流保护定时恢复	on 🔹	预充开启电压	2400 mV					
默认 參数	过放电恢复负载锁定	on 🔹	低压禁止充电电压	2000 mV	充电过流保护	105 A	电池温度:		
读 寄存器	负载释放延时	2000mS 👻	充放电状态检测电压	500uV 💌	放电过流保护	105 A	充电高温保护	65	°C
写 寄存器	充放电MOS开启延时	128uS 💌			充电过流保护时间	8 S	充电高温保护释放	55	ъ
	Tiell TTA	Essa	× 11 18 40 × 45 40 - 44	1.486.	放电过流保护时间	8 S	充电低温保护	2	ъ
BMS 关机	与形址 与谷重 2 100	Ah 100 %	一座支器相关值(限1位)	0.881)	过流保护恢复时间	30 S	充电低温保护释放	5	с
选择语言 ▼		言入	逆 艾器 充电限压	57.6 V			放电高温保护	65	с
			逆变器放电限压 	41.6 V	限流板保护电流	100 A	放电高温保护释放	55	°C
I I I I I I I I I I I I I I I I I I I	选择通信协议(下拉达择现4	1 创于动物(八序写)	速变器充电限流	100.0 A	限流板保护时间	5 S	放电低温保护	-5	°C
NODBUS失败帧数	01.Sol-Ark (CAN) 01.Sol-Ark (CAN) 02.GoodWe (CAN) 03.Gro/(485) 04.Aiswei (CAN)	0	連至器放电限流	100.0 A 写入	限流板保护恢复时间	600 S	放电低温保护释放	-2	с
	05.SMA (CAN) 06.SoroAN/485)								
	AT MILET IFANG								_

Read BMS firmware and hardware

Click Read under	BMS Debugging Soft	ware V2.1							- 0
the PMS Version	Setting Serial Port	Real-time Collect S	/stem Config	Data Log Alarm R	ecord Ci	libration		Protection	Status
	COM3 • D	Cell 01	mV	Cell 09	mV	MCU Temp	ъ	OV Cell Over Voltage	Charging Status
on the bottom right	9600 *	Cell 02	mV	Cell 10	mV	MOS Temp1	c	UV Cell Under Voltage	Discharging Status
on the bottom right.	Modbus Address	Cell 03	mV	Cell 11	mV	MOS Temp2	ъ	PF Abnormal High Voltage	Nomal Status
	2	Cell 04	mV	Cell 12	mV			LOV Low Voltage Forbidden Charging	
You can see the	Open Serial Port	Cell 05	mV	Cell 13	mV	Battery Temp1	c	OCC Over Current Charge	Emergency Shutdown
	Collect	Cell 06	mV	Cell 14	mV	Battery Temp2	ъ	OCD1 Over Current Discharge 1	Balancing Status
hardware and	Start Collect	Cell 07	mV	Cell 15	mV	Battery Temp3	ъ	OCD2 Over Current Discharge 2	
	Ston Collect	Cell 08	mV	Cell 16	mV	Battery Temp4	r	SC Short Circuit	
software version of		Pack Voltage	mV	Pack Current	má	Full Canacity	mAh	MOS OTC Charge Over-Temp	Recharge-MOS Open
the ourrent PMS	Default Settings	Max Voltage	mV	Max Vol Index		Remain Capacity	mAh	MOS UTC Charge Under-Temp	Charge-MOS Open
		Min Voltage	mV	Min_Vol Index		soc	%	MOS OTD Discharge Over-Temp	Discharge-MOS Open
	Read Register	Max Vol-diff	mV			Cycle Time		MOS UTD Discharge Under-Temp	
	Write Register							BAT OTC Charge Over-Temp	Version
								BAT UTC Charge Under-Temp	Hardware 5.0.P
	BMS Off							BAT OTD Discharge Over-Temp	Software 1.13.10.1
	Language 🔻							BAT UTD Discharge Under-Temp	Batch No
	Succeeded Frames	bStatus1		tempStatus				Flash Check Error	Read
		bStatus2		balStatus				EEPROM Write Failure	
	Failed Frames	bStatus3		packStatus				CAN Communication Failure	

17.BMS firmware update

Firmware upgrade can be performed through the PC software or a dedicated upgrade tool.

18.Disposal of used batteries

Abandoned lithium iron phosphate batteries have potential hazards and should not be thrown directly into the trash can. Please search online for free recycling.

Many places can safely handle these batteries. Make sure to call first to confirm their business. If you cannot find a safe disposal solution, please contact our team instead of mishandling the battery.

19.Contact us

SHANDONG HUISON ELECTRONICS TECHNLOGY CO., LTD

N0.10 West Keda Road, Yicheng District, Zaozhuang City, Shandong, China 277300

Tel:0086-0632-7526626

Eamail:sales@huisonbattery.com

